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where A(x) is the unique polynomial of degree at most q which satisfies

LAGm =0, j=0Mkn-1*,
My =( 05 1= 0*DO,

0, j=11)m-1 ,

a -
A'(—j)={0’ J=9,

0. 3=1Wn1.

Briefly, we have shown that the numerical solution is advanced one
step by setting

t=t
(3.1) P, (6) = p_,(®) + A8

where Sn is chosen so that pn(t) satisfies the differential equation and
A(x) is characteristic of the multistep formula.

The polynomial formulation of the k-th and (k+l)-st order
Adams-Moulton formulas was discovered by Descloux [1963]. Schemes based
on general choices of A(x) are discussed by Skeel [1973] and by Wallace
and Gupta [1973], who give an interesting interpretation of polynomial
schemes in terms of polynomial predictive filters. They derive new

formulas for stiff problems by choosing A(x) to be a monic polynomial

which best approximates zero for x < 0. Different types of
approximations yield different formulas. Still more formulas are
presented in Gupta and Wallace [1975] and Gupta [1976]. The 1975 paper
uses the term modifier polynomial for A(x). (In the 1973 paper this
term is applied to A(x/h).)

A very simple identification of these polynomial schemes with

Nordsieck formulas becomes apparent if the polynomials are represented

- '
by vectors of scaled derivatives., Let a [pn(tn), hpn(tn),...,
% (D (e )/q11" and 2 = (A0, A'(0),..., AP (0)/q!]". Then from

(3.1) we have

L S I G N




G PR -3,
) = el ey + )6,

from which it easily follows that

a = Pa + 28

~n ~n-1 ~ n
with § chosen so that h_leTa = f(t , eTa )
n ~1~n n ~0~n

For the k-th order backward differentiation formula

k
L a

hy'
j=0 3

3703 7
the modifier polynomial A(x) must satisfy
A(-j) =0, j =1(1)k-1 ,

A(0) =1, A'(0) = a

0 ’
whence
k-1
A(-k) = {A'(0) - E a.A(-j)}/ak
j=0
=0.
Therefore
A = 05
k
- A k+1, j
j-E-O k! [j+1]x

where the (square) brackets denote Stirling numbers of the first kind
(see, for example Knuth [1968, p. 66]). The fact that A(x) vanishes
for x = -1, -2,..., -k means that the values Ya-1’ Ypo2?* " Yok 2Te

"remembered'" after advancing from t g tot.

-1
For the (k+l)-st order Adams-Moulton formula

Wi

s < <+ e e e v —— - ——

PSS




k

-— = U
Yn Vn-1 b 5 Bjyn—j

j=0
the modifier polynomial of the (k+2)-value form must satisfy
A(-3) =0, 1= 2(1)%-1 ,

ACO) =B A'(0) =1,

0 ’

A(-1) = A'(-1) =0,

whence
k-1
A (-k) = {AC0) - A(-1) - I B, A'(-1)}/B
Al 3
j=0
=0 .
Therefore
A = 55,
and so
X
M) = 1 O ey
-1
-1 X
=- 7 ey + £ ey
0 0
In terms of Stirling numbers
X k+1
y+k - 1 k#l; 3
5 SRR e gt

These are the formulas used by the nonstiff options of the codes DIFSUB
of Gear [1971], GEAR Rev. 3 of Hindmarsh [1974], and EPISODE of Byrne
and Hindmarsh [1975] when the stepsize does not vary.

The (k+l)-st order Adams~Moulton formula could also be written
as a (k+l)-value Nordsieck formula. The modifier polynomial for such a

formula can be determined by applying the theorem that follows.
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THEOREM 3.1. Let A(x) be the modifier polynomial of the (q+l)-
value form of a linear k-step formula of order at least q where
q > k+l and p(§) and o(§) have no common factors. Then K(x) = A(x) - A(x-1)
is the modifier polynomial for the q-value form of the multistep
formula.

Proof. For m < k

m-1

1A n) = ERGay - I {-a A(-1) + BA' (-1}
i=0
=0 ,
and for m = k+1

8o " y X ( ;
A(O) = — A'(0) + — I -0, A(-1i) + B.A'(-1)

ao ao i=1 i i

=80_

Hence

LiA(-m) -0, 4= 6k,

A0) = Boa A'(0) = ao s

A (-3) =A'(-3) =0, j=11)m-1 ,
from which the theorem follows.O
Therefore the (k+l)-value form of the (k+l)-st order Adams-
Moulton formula has
x~1
i (y;k)dy

X
N = T Fay -
-1 1

0 X
=5 Oy + 7 1S - ey
2 0

- y+k-1

X
o Ty +L Oy
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These are the original formulas of Nordsieck.
Let us consider now the case m=0. The values 6n’ Yy and y;

are determined as before. However, for j = 0(1)k-1

Li:]ldn(tn) = Oy 3 Ty,0 ¥ 00T 0

= o 18g * By 4%

a5
Therefore the solution is advanced one step as given by (3.1) with A(x)

determined by

L‘}A(O) e e j = 0(L)k-1.

k-3 Bo * By
However, pn(t) does not necessarily interpolate and y; nor does

-a-‘f it generally satisfy the differential equation at t = tn. Therefore,
in the scaled derivative form this scheme is a generalized Nordsieck
formula in the sense that Gn is determined by a condition other than the
satisfaction of the differential equation at t = tn. Such formulas are
potentially useful because of their minimum storage property. Nordsieck
[1962, p. 27] considers the possibility of having 20 = BO but ll # oy
so that pn(t) interpolates b N but not y;; however, the results of his
experiments were not promising. Also, Wallace and Gupta [1973] mention
that "Other choices of Gn are rationally possible, and we hope to explore

some other choices later.'" Finally, it is worth noting that Theorem 3.1

extends to the case q = k.
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4 The Coxespondcnce betwesn Moltletep sud Bopdsfock Sarwilas. In the
preceding section it was shown how to construct the modifier polynomial
A(x) of a Nordsieck formula from the polynomials p(£) and o(£) of a linear
multistep formula provided that p(£) and o0(£) have no common divisors.

In this section we show how to obtain p(£) and o(£) from A(x), and we
establish a one-to-one correspondence between (i) the class of all (q+l)-

value linear Nordsieck formulas and (ii) the class of all linear multistep

formulas of formal order at least q and of stepnumber at most q (including

those for which p(£) and 0(£) have common factors). |

For each linear Nordsieck formula we define a corresponding

linear multistep formula (P, G) by ‘

p(E)

det(E1-P)e] (E1-P) ',
(4.1)

5(E) 1= det(E1-P)ej(ET-P) L.

Applying Cramer's rule to e?(EI-P)—lZ for j =1 and j = 0 yields

&~1 lo -1 oo -1

0 %y =2 -q

% i q

P(E) =det | 0 2, &-1 ~(3)
i . .
: |

2 =1

L. : q 0 s o=l

and
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g 2 —1 ol -
10 1 1
El E-1 -2 -2
~ = o > q
5(E) = det |%, O &l \\\\\\\\ ¢
2 () 0 E-1
i) =]
Hence G(£) is a polynomial of degree q or less, and p(§) is of degree q

since ll # 0. Let

q ) q e
5 = ¢ ot tand @ = I BV,
i=0 1 i=0
i: W& It might happen that aq = Bq = 0, and hence express
(4.2) 5(5) =: £ Lp(E) and 3(8) =: E" o(E)

where ai + Bi > 0 and m-1 = g-k.

The following theorem shows that the p(£). and 0(E) corresponding
to A(x) can be used to reconstruct A(x) by the process of §3 if it is
applicable.

THEOREM 4.1. With p(E) and o(E) derived from M(x) by (4.1) and

(4.2) we have

[ 3
LlA( m) =0, ]

0(1)k-1 ,

20 = A(0) = BO . 21 A'(0) = a

0 s
A-j) = A'(-j) =0, 3 =1(D)m1,
Aem) = (D%, A ) = Dy
Proof. The relations 20 = Bo and 21 =0 follow from the

expressions for p(£) and 0(£) as determinants. From (4.1) we have

T T AR

e U —
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n

pE) = - (- T el (-gr™H Tl e

- 5 gy
j=0 ~ -

(DY o artcaamel

j=0
Clearly, A'(-j) =0, j = 1(1)m-1, a = (-l)qA'(—m), and
p(€) = ~(-1 £ At (-3-med |
j=0

Similarly A(-j) =0, j = 1(1m-1, B, = (-1)%% (-m), and

o) =-&E1DI § AEj-med |
=0

From these expressions for p(£) and o(§) we get
o ™
() I A-j-mE) +0@®) I A'(-3-med =0 .
j=0 j=0
Equating coefficients of the powers of & completes the proof.O
The next theorem shows that the multistep formula (P, &)
corresponding to A(x) is of order at least q, and therefore it can be used
to reconstruct A(x) by the process of §3 if p(£) and 0(£) have no common
factors.
THEOREM 4.2. The linear multistep formula corresponding to
a (q+l)-value linear Nordsieck formula has formal order at least q.
Moreover, it is of order at least q+l if and only if PT% = 0 where the

components of b are the Bernmoulli numbers defined by

h|
e il
=g 3!

8
o
N

e e e e -
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Proof. According to the definition of formal order and
equation (4.1) it must be shown that

qtl T
2 €

- - +
(kY 1P 1 = 1ng(1+z)zq+1eg((1+z)1-P) Ly + 0% |
and so it is enough to show that

1z,

e{(1—z‘ B = 1og(1+z)eg(1—z‘1F)"1 + 0(z)

Fq+1

where F := P-I. Because 0, it is not difficult to verify that

1og(1+z)(1-z‘1F)'] 1og(1+F)(I—z'lF)'1 + 0(z) ,
. e TR P .
and so it suffices to show that €y log (1+F) = e~ This holds because

I+F = P = exp(Q) where

To prove the second assertion, retrace the first two steps of the proof

to get the following condition for formal order of at least q+1:

Tep L L pyy -
50{1 SF ...t q+1( F) }% =0 .
The matrix in braces is
2 b
Jog(EER) _ @ = g Al Qj
F exp(Q)-1 i=0 G ’

from which the second part of the theorem follows.[

Remark 1. The matrices P, F, and Q obviously represent the

linear operators shift, forward difference, and derivative, respectively,

for polynomials of degree q or less. Defining B = I-P.-1 to be the matrix
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representing the backward difference operator V it is not difficult to

show that the condition bTQ = 0 is equivalent to

q 1 i
I — VA1) =0
b T T )
as well as
g-1 ;
e = € e = {
A(-1) jio Y§+1V A'(-1) 0 3

where the Y$+1 are the coefficients for the backward difference form
of the Adams-Moulton formulas. These conditions on the polynomial A(x)
arise in another situation in Henrici [1962, p. 342].

3 Remark 2. The condition bTR is obtained by Wallace and |

i g Gupta [1973] although the coefficients bj are not identified as the
Be.noulli numbers. Instead a recursive definition is given for the

b., which should read

3
J
341
b=, I o, =0
0 Pt S |

Remark 3. 1t is shown by Gear [1966] that a stable linear
Nordsieck method is convergent of order q in all components of a s and
it is shown by Skeel and Jackson [1977] that it is convergent of
order q+1 in all components if and only if PT% = 0.

It has thus been shown that to each linear Nordsieck formula,
which is uniquely specified in terms of %, there corresponds a linear
multistep formula of formal order at least q and of stepnumber at most q.

We now establish a correspondence in the opposite direction. We have

from (4.1) that

e -




where F := P-T is the matrix of the forward difference operator. Equating

coefficients of powers of z gives

~(3) ot
R RO
j!

and hence A(x) is determined from its corresponding G(£) by Newton's

forward difference formula

q
(4.3) Bk = E S G

]
Since the linear multistep formula is uniquely specified by G(&), the

one-to-one correspondence is established. The inverse transformation

is conveniently expressed as

q

5 = & Aoy -1
j=0
and
q-1 . s
pEg) = & Alnr oy (e-1)1
i=0

Note from (4.3) that the popular normalization 0(1l) = 1 corresponds to
£ = 1L/q¥.
q q
Remark. Theorem 3.1 can be generalized to any modifier

polynomial A(x) for which m > 2. Express G(£) =: £6(§). Then

5P m =Wy + 09 Py,

from which it can be shown that




and

A(x)

Clearly ﬁ(x) is the modifier polynomial for the q-value formula.

= A(x) - A(x-1) = &

26

-1 ~(j)
A(x) = 2 QFLI—)- (x-i-l
j=0 ! q-j

j_o dit Q‘l-j

T _a
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5. Equivalence of Linear Nordsieck Formulas to Linear Multistep Formulas.
Recall that a linear Nordsieck formula determines successive values by !

the system of difference equations

. = <+

(5.1) & =Pa . &Gn

where Gn is chosen so that y; = f(tn, yn). We do not consider the more i
general formula g i Aan_1 = ldn because formulas with A # P are of ’

dubious value, and in any case, most of the results for A = P generalize
if minor restrictions are imposed on A.

For theoretical purposes a rewriting of (5.1) is often useful.

Y T g T P |
Premultiplying (5.1) by e yields Gn 21 (hfn slen_l). Let % : 21 %
and S := (I—EeI)P, and we get

= 3
(5.2) a, an-l + h~fn

il

where f_ is chosen so that f £t eTSa + he f ). Expressions for
n n n’ ~1 ~n On

-1

P(£) and G(§) in terms of S are given by the following theorem, whose

proof uses an idea from Osborne [1966, equation (4.3)].

THEOREM 5.1. The polynomials $(E) and G(§) defined by (4.1)

satisfy

det(gI—S)gf(gx-S)‘lg

p (&)

and

5(E) = det(EI-S)ep (E1-5) 'L .
Proof. We have

EI-S = £I-P + felP

= (E1-P) (1 + (EI-P) EelP) ,




g
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and so
=17 =15 T
det (EI-S)* (EI-S) "2 = det(EI-P) det (I+(EI-P) zglp)
'(I+(€I—P)_lgeIP)-l(EI—P)_li 3
This can be simplified by means of the identity

det(I+xyT)'(I+xyT)_lx K%

which follows from Cramer's rule. Thus we get

det (E1-5)* (£1-5) 1% = det(£I-P)+ (£1-P) 2% ,
from which the lemma immediately follows.O
T

Note that e{S = 0"; and so P(§) = det(EI-S)E_lll, which

gives the characteristic polynomial of S as
-1.m
det (§I-S) = Ql € p(g) .

Thus the strict root condition is satisfied by the linear Nordsieck formula
(cf. Skeel and Jackson [1977]) if and only if it is satisfied by the

corresponding linear multistep formula.

The theorem that follows shows that in the case of all Nordsieck
formulas the zero-th and first components of the vectors a satisfy the
difference equation of the corresponding linear multistep formula (p, O).
Hence all the limitations on the accuracy of multistep formulas (Dahlquist
[1956], [1963]) apply also to Nordsieck formulas.

THEOREM 5.2. The values Yoo y;, n = 0(1)N, computed from (5.1),
satisfy the linear multistep formula

p(E)y, _, = ho(E)y!

defined by (4.1) and (4.2) for n = k(1)N.

Proof. From (5.2) we have

S —— - ——
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. k-1 -
Sk_Jan-k By B 8B,
~ ] i=J
and
k -1 k-l .
p(S)a_ = L aa .- I a I § ShE . .
B j=0 "3 520 J i=j .

Premultiplying by eT and rearranging gives

0

k-1
Z
i=0

k 5 A e
ooy | = e {2 a5 I)enf
4=0 j n-j ~0 j ~ n-

T
, + eP(8)a, . -
j=0

i

It needs to be shown first that

™M.a

(5.3)

G(E) =

i=0

=9

i i
T i-jq5,9-1
go{.z ajS }gi .

We have that

5(€) = 4] Ep(E)eg (E1-5) 72

pE)ep(1-£71s) 712

iT

q—
L 0

sit |

~

d=
g
i=0

q-j
a,
Jﬁ

Il ™M.a

j=0

which leads to (5.3). It remains to be shown that

1h T

2P0 = Bty -
Because S satisfies its characteristic polynomial, egp(S)Sm = OT. Also,
because S is of rank q, it has only one linearly independent left eigenvector
m-1

is a multiple of eT

associated with the eigenvalue 0; and so egp(S)S 1

This implies egp(S)Sm_l(I-EeT) = 0, and so by (5.3)

eT
k+m-1<1 °

ego(s)s™ ! =




r—,—_———m—'ﬁ——~ S —— 1
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If m > 1, then e'(I’;Q(S)Sm.l = OT, and this argument can be repeated until

~

the assertion is established.O

Remark 1. We have y; = fn except possibly for n = 0.

Remark 2. This theorem improves the result of Descloux [1963]
and Osborne [1966] in two respects: first, p(§) and 0(§) are given in
closed form, and second, the result is shown for n > k rather than n > q.

The next theorem proves that Nordsieck and multistep methods
are equivalent in the sense of Gear, for it is shown that there is a
F nonsingular matrix that relates the scaled derivative approximations a
to certain linear combinations of computed y and y' values. As a
consequence, in practically all cases linear Nordsieck methods cannot
be regarded as generalizations of linear multistep formulas (cf. Gear
(1971a, pp. 102, 136]).

THEOREM 5.3. Assume the polynomials p(§) and 0(§) corresponding
to a given (q+l)yvalue Nordsieck formula have no common factors. Then
there exists a unique nonsingular (q+l)x(q+l) matrix T depending only on

L such that

for n = k-1*(1)N where

o= [SO ~k-lﬂ-1* h ' h ' ]T
In ? tem’ "% Ypem  ? Tae® 0 Vet Yarottr eyt

Proof. By Theorem 4.2 the formula (p, ¢) is of order at least

g and hence by the corollary to Theorem 2.1 there exists a unique

nonsingular matrix T such that




™ i r_o .
p(t) th(tn_m)
hp' (£ ) -1 ilece )
n =T h n-m
q (Q) '
_h P (tn)/q!J _pp (tn—m+1)_

for any polynomial of degree q or less. Define values yj and yg for
j = 1*-k(1)-1 such that
To = T -

The process of §3 may be applied to construct a (q+l)-value linear

1

Nordsieck formula which would compute vectors T p n = 1(1)N. The

results of 84 imply that this formula would be identical to the given
Nordsieck formula, and hence a. = T_lyn. The uniqueness of T follows

from the fact that the method is exact for all polynomials of degree
at most q if the starting values are exact.O

Remark. For implicit formulas Wallace and Gupta [1973] give

an informal argument suggesting that the quantities an_q, and 6n-j’

j 1(1)q-1, can be expressed as linear combinations of yn—j’ f 3

n-j

1(1)q. Their conjecture is correct as long as Em_lp(E) and

b
g

m- M
lO(E) have no common factors. 1In that case it is an immediate

consequence that the components of a are linear combinations of

yn_j’ fn_j, j b 1(1)q‘

Theorem 5.3 does not extend to Nordsieck formulas for which the
corresponding p and 0 polynomials have common factors.

THEOREM 4.4. Assume that p(£) and 0(§) have a common factor
and that the formula (p, 0) i8 of order at least q. Then a cannot be

expressed only in terms of yn_j, hy;_ s j = 0(1)n.

3
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Proof. We begin by showing that there exists an eigenvector
v associated with a nonzero eigenvalue E of S such that eov = 0. From
(4.3) it follows that p(£) and o(£) have the common factor 1 if and only

if Zq = 0. First, suppose that Qq = 0. Then £ = 1 is a common root and

so the formula must be of formal order at least k+l. Hence le =0

where
bT X T log(P)
= 0 Bz *
and so
(bT+e§)S 5 HD = b+ E logP = b' + ef :

Also 2q = 0 implies e:S = e:. Therefore the null space of S-I is at least

of dimension two, and so we can choose v # 0 such that Sv = v and

egv = 0. Second, suppose that lq # 0. Let

-1
v(§) = det(EI-S)+(EI-S) "% ,
which is a vector of polynomials in &. Let E be a common root of p(&)

and 0(£). Then v(E)) # 0, since e v(E,) = (.-1)% . Also

.Q

(£y1-8)V(E)) = det(E T-5)+L = 0 ,

and egv(io) = G(EO) = 0. Therefore in either case there exists EO #0

and v # O such that S = v and eTv = 0. Moreover, eTv = 0, because

1 is a left eigenvector for the eigenvalue 0. This means that if 2,
were changed to a + v, the values of ¥ and hy; would remain unchanged

for all n, and yet a would become a + £%. This proves the nonexistence

0~
of an expression for a in terms of the values Yo and y;.D
Theorems 5.3 and 5.4 do not cover the case where the order is

less than q due to a common factor of £-1, but extending the results to

such formulas does not seem worthwhile.
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6. Equivalence of Prcdlgtor corrector Formulas. The use of a linear

Nordsieck formula requires the solution for Gn of the equation

] + ) +
hyn’0 Llén hf(tn, yn,0 Roén)

e Pa . In practice this must be

where Y. g™ ¢ Pa LA and hyé 0 1Pa

~Q <

approximately solved by some iterative process:

Gn,o - O ’

. % )
1= = - & =
6n,u+l 6n,u [211 QOth,u] [hyn,0 llsn,u hfn,u] y

om0, 1,ceay Mn)-1 ,

; i i 2 = + L 5
where fn,u’ 1, and Jn,u—l are defined as in §2 with yn,u yn,O Oan,u

After determining § and adding the increment gén a final

g 6n,M(n)

function evaluation may or may not be performed. For a P(EC)* Nordsieck
formula

a_ := Pa + 28
~n ~n-1 ~n

and for a P(EC)*E Nordsieck formula

= |
S Pgn-l * %Gn + glh(fn yn) i

Sl a= !
where hy' : hyn,o i Ql(sn,M(n)-l'

Remark. The predictor-corrector Nordsieck formulas of Gear
[1971a] are introduced independently of linear (''corrector only'")
Nordsieck formulas. For this reason these predictor-corrector formulas

use Kll-Qoth’u = 1.

For the P(EC)* formulas we have that hy; = + 2.6

T

e Pa

~1 <n-1 i n
and so the recurrence can also be expressed as

~

- + '
fn an-l &hyn

Therefore the equivalence results apply to P(EC)* formulas as much as

they do to linear formulas. The underlying multistep predictor formula
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ARE .
can be obtained from yn,O eOPgn_l by expressing a _1as linear

~

combinations of the components of s MY thus it has stepnumber of at most
k+0%,
The situation is quite different for P(EC)*E formulas.

To determine the equivalent multistep formula, one begins with the

recurrence

E f-e )hy' + ;
B w5a , F e iy e b

Proceeding as in the proof of Theorem 5.2, one obtains a difference

. . - —' . = - 1]
equation involving yn—j’ i 0(1)k, yn-j’ j 0(1)k-1, and yn_j,
j = 1(1)k, which is not a true P(EC)*E multistep formula.

For example, consider the three-value Nordsieck formula. J

By expressing . and Yoo1 38 functions of ;;, y;_l, fn—l’ and a _o

and then eliminating th;_Z/Z, one obtains the difference equation
v+ @20,-2)y o+ (A-20)y
. e - ' o == ¥ '
= R,Ohyn + [(1 lo)hyn_1 + (22 lo)hyn_ll + (20+22 1)hyn_2 s

which is not a P(EC)*E formula unless RO = 22. For the third order

Adams-Moulton formula this is

- = _5_ v _7__ ' i S i '
Yo "y "z Nt Mgt el t e,




35

7. Applications. An important practical consequence of the equivalence
theory is that all multistep formulas are minimum storage formulas.
This idea is certainly implicit in the investigations by Gupta and
Wallace of new multistep formulas. It is also the rationale for the
computer research of Kong [1977] for k-step formulas of order k having the
smallest error coefficient for a given angle a of A(a)-stability. Previous
searches by Dill and Gear [1971] (the error coefficient for their formula
should be 14.0 rather than 0.0108) and by Jain and Srivastava [1970]
concentrated on formulas for which most of the trailing coefficients of
0(£) were set to zero. The computer results of Kong suggested formulas
which lead to a proof of the following result: for any a < m/2 there
exists an A(a)-stable k-step formula of order k. This is also proved
by Grigorieff and Schroll [1977].

The paper of Nordsieck mentions that '"the potential advantage
of a more elaborate procedure in which the matrix hfy is numerically
computed at every step and % is made a chosen function of hfy, implying
a nonlinear process tailored to the subject differential equation system,

" where we have

is an interesting topic for future investigation,
substituted our notation for his. The idea is developed further in a
report of Gear [1966], which proposes a formula for scalar implicit

differential equations of any order. For the equation y' - f(t, y) =0

the formula becomes

and

|

A
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where AM and BD refer to the (q+l)-st Adams-Moulton and q-th order
backward differentiation formulas, respectively. (The subscripts y(q)

in the equation on page 21 of this report should read aq.) This idea

is extended to systems of differential equations by Skeel and Kong [1977],

who suggest

and

Il,ll-SZ,Oth’11

:= (1-chf )?

y
where Y and c are free parameters. In 84 it was shown that p(f) and o(§)
are linear transformations of %, and so a linear combination of ¢
vectors corresponds to that same linear combination of the corresponding
linear multistep formulas. Thus, under the assumption of constant hf

the "blended" Nordsieck formula is equivalent to the same blend of linear

multistep formulas.
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